El contenido de esta página requiere una versión más reciente de Adobe Flash Player.

Obtener Adobe Flash Player

 

AGUA

La naturaleza del agua empleada en la fabricación de cerveza es de mucha atención y se llega a decir que el éxito de la cerveza depende del empleo adecuado del agua.

Agua

En primer lugar tiene que ser bacteriológicamente limpia. Como la cerveza se constituye como mínimo por un 90 % de agua, este ingrediente es tan importante que define el tipo de cerveza que se pueda elaborar en una zona.

El PH es el de mas importancia para las reacciones bioquímicas que se desarrollan durante el proceso; en todos los pasos de la fabricación hay disminución del PH y los amortiguadores minerales del agua contrarrestan en parte este cambio.

De todos los elementos que forman la cerveza, probablemente el agua sea el más importante y el menos atendido de todos. Hay que saber prepararla y calcular la cantidad necesaria para la elaboración para no quedarse sin agua a la mitad del proceso. También hay que saber cómo modificarla para poder recrear un estilo auténtico o mejorar el sabor de la cerveza y saber corregirla para alcanzar el pH óptimo.

Agua

La influencia del contenido mineral del agua sobre el PH es importante durante la fabricación y algunos componentes minerales ejercen una influencia específica, influencia estabilizadora de los iones calcio sobre las amilasas. Los iones de calcio reaccionan con los fosfatos orgánicos e inorgánicos de la malta precipitando fosfatos de calcio, el resultado es la acidificación del mosto si el calcio se halla en forma de sulfato. El ión magnesio se encuentra raramente en dosis superiores a 30 mg/lt. El ión potasio se encuentra raramente en gran cantidad produce el mismo efecto pero en menor cuantia. La mayoría de los demás iones como cloruros, sulfatos, sodio y potasio no tienen otra influencia que en el sabor de la cerveza.

Las cervezas de baja fermentación necesitan agua blanda, con poca cal, y las cervezas de alta fermentación necesitan agua dura, con muchas sales.

ANALISIS DE AGUA CERVECERA EN mg/lt

 

Burton

Dortmund

Munich

Pilsen

Sodio

54

69

10

32

Magnesio

24

23

19

8

Calcio

352

260

80

7

Nitratos

18

 

3

 

Cloro

16

106

1

5

Debido a la necesidad de tener asegurada la suficiente agua y de una calidad constante, las cervecerías se solían construir alrededor o encima de un manantial. Por eso las verdaderas buenas cervezas no se fabrican nunca fuera de su lugar de origen, porque pueden perder gran parte de su sabor original o de su calidad al tener que tratar el agua químicamente para obtener el mismo gusto. De ahí que las verdaderas cervezas de calidad -con denominación de origen-, como las cervezas de Munich, de Pilsen y las Trapenses, no se elaborarán nunca fuera de su ubicación original.

La dureza del agua

El agua dura es aquella que contiene un alto nivel de minerales, en particular sales de calcio y magnesio. Aunque otros minerales, como el estroncio, el hierro y el manganeso, también contribuyen al endurecimiento del agua, lo hacen en menor grado, ya que generalmente están disueltos en el agua en pequeñas cantidades.

Las aguas duras no son perjudiciales para la salud ya que los minerales que contienen, calcio y magnesio, son necesarios para el cuerpo humano.

¿Qué origina la dureza del agua?

El agua adquiere el calcio y el magnesio, que determinan su dureza, en su contacto con los distintos tipos de terrenos por los que circula el río o el acuífero de donde procede. Por lo tanto, el grado de dureza del agua depende del carácter geológico del suelo que atraviesa desde su origen. Así, un suelo calizo genera mayores contenidos de cal que un suelo granítico.

Que importancia tiene el agua?

Muchísima, ya es la mayor parte, esta no debe ser muy clorada, ni poco estéril, también es importante la dureza.Se usan varios compuestos quimicos para tocar y modificar el Ph del mashing, en general esto tiene que ver con tratar de modificar las caracteristicas del agua tratando de imitar el agua de algun de lugar.

Recuerden que mas del 90% de la cerveza que tomamos es agua. Es por ello que
es agua es uno de los componentes de mayor importancia en la produccion de la cerveza.
A ver si adivinan porque Isenbeck, Heineken pusieron su planta productiva en la zona de Campana / Zarate. En el caso de Heineken ( que es de Quilmes) la logica a priori hubiera sido ponerla en la zona Sur cerca de Quilmes. Brahma esta en Lujan luego de grandes estudios, primero la iba poner donde esta Toyota en la zona de Campana / Zarate.

Las tierras en la zona Sur son mas baratas que en la zona Norte.
Pues bien, en la zona de Zarate / Campana a unos 60 metros de profundidad hay una napa acuifera denominada PUELCHE, que casualmente pasa tambien por Lujan (Brahma) y que tiene unas caracteristicas cerveceras espectaculares.

En cambio las aguas de la zona Sur (Quilmes) son de mala calidad .......
Como ademas las aguas Inglesas (Burton) en general son aguas duras, esto
confiere un sabor especial a las Stouts y Porters. En el otro extremo (aguas muy blandas) hay cervezas que se ven muy favorecidas como las Pilsen de Bohemia, y hay quienes quieren imitar el estilo tratando su agua. Las cervezas de baja fermentación necesitan agua blanda, con poca cal, y las cervezas de alta fermentación necesitan agua dura, con muchas sales.

Para quienes viven en la provincia, es interesante hacer un analisis fisico - quimico del agua que usan. De ello veran que estilos de cerveza se ven mas favorecidas en su area y cuales son mas dificultosas sin tratar el agua.

Eventualmente el día anterior a la cocción, hervir el volumen de agua a utilizar durante 5-10 minutos a fin de eliminar el oxígeno disuelto y el cloro. En lugares donde el agua es muy dura o tiene demasiado sarro esto ayuda al precipitado. Reservar para el otro día.

Si filtro con filtro de carbón no hay que hervir.

Si el agua es dura hervir 30 minutos dejar reposar y eliminar el agua del fondo.
Como me doy cuenta que el agua es dura. Forma calcio en las pavas.

De todos los elementos que forman la cerveza, probablemente el agua sea el más importante y el menos atendido de todos.

Hay que saber prepararla y calcular la cantidad necesaria para la elaboración para no quedarse sin agua a la mitad del proceso. También hay que saber cómo modificarla para poder recrear un estilo auténtico o mejorar el sabor de la cerveza y saber corregirla para alcanzar el pH óptimo. La química del agua es un tema tan amplio que podría llenar más de un libro. Aquí solamente vamos a discutir algunos de los aspectos fundamentales del agua en relación con la cerveza.

El primero del que hablaremos es sobre la cantidad necesaria. Todos sabemos que para hacer 20 litros de cerveza hacen falta más de 20 litros de agua.

Más de una vez le ha pasado a uno que se quedó sin agua preparada al momento de lavar  y tuvo que preparar más agua de apuro o como preparó mucha agua lavó de más y se le fue la densidad muy abajo y tuvo que hervir mucho tiempo para evaporar y aumentar la densidad.

Hay un cálculo sencillo para saber cuánta agua va a ser necesaria para la cocción.

Empezamos con los 20 litros finales de cerveza que queremos, a eso le sumamos el agua que quedó en la malta usada, el agua evaporada durante el hervor, el agua que quedó en el equipo, fondo del macerador, mangueras, etc. y la contracción del volumen del mosto cuando se enfría.

Analicemos cada uno de estos puntos antes de ilustrar todo con un ejemplo global.

Durante la maceración la malta absorbe una gran cantidad de agua, tanta agua que el peso de la hez de malta está formado en un 80% por agua y un 20% de grano. Ahora, el peso de la hez de malta seca no es el mismo que el del grano nuevo, durante la maceración el almidón se convirtió en azúcar y el azúcar se disolvió en el agua, formando el mosto, entonces queda sólo una fracción de lo que era antes de macerarse. El peso de la hez de malta seca es de cerca del 40% del peso original (basado en un rendimiento del 70 % sobre una malta de extracción máxima, en laboratorio, del 80% del peso del grano), es decir, si tenemos 4000 g de malta nueva, una vez usada su peso será de 1600 g. Esos 1600 g. son el 20% del peso de la hez de malta, entonces el peso restante es de 6400 g., que equivalen a 6400 ml.

Durante el hervido se evapora una cantidad constante de agua, dependiendo de cada equipo. Para determinar esta cantidad se puede hacer un experimento o anotarlo la próxima vez que elabore. Si no conoce cuánta agua que evapora su equipo, o nunca hizo cerveza, para unos primeros cálculos se puede asumir que normalmente evaporará una cantidad de agua igual al 5% del volumen de su olla por hora, basado en la experiencia de las grandes cervecerías. Esto es, para una olla de 20 litros, evaporará 1 litro por hora.

Es posible que durante la elaboración quede líquido estancado que no se pueda aprovechar, por ejemplo en el fondo del macerador (que quede por debajo del falso fondo o chupapalmer y no pueda ser extraído), en las mangueras o caños de recirculado y trasvase, supongamos que en total suman 2 litros. También hay que agregar el agua que queda en el fondo de la olla, junto con los restos de lúpulo, agreguemos 0,5 l más.

El agua (y el mosto también) cuando se calienta se expande y en ebullición ocupa un 4% más que cuando está a 20ºC.

Suponiendo 20 litros de cerveza hecha con 4 kg de malta y hervida durante 1 hora. Vamos a necesitar:

Volumen de cerveza:  20 l
Pérdidas por el equipo:  Agregue 0,5 l
Reducción de volumen por enfriamiento: Divida por 0,96
Evaporación:   Agregue 1 l
Pérdidas por el equipo:    Agregue 2 l
Agua en la hez de malta:    Agregue 6,4 l
Total:      30,8 l

Otro aspecto fundamental del agua es el del pH. Según los químicos especializados existen sólo tres compuestos hallados comúnmente en el agua que modifican el pH de la maceración. El primero es el bicarbonato (HCO3-), comúnmente mencionado como dureza temporal o alcalinidad. Éste aumenta el pH del agua. Los otros dos iones son el calcio (Ca++) y el magnesio (Mg++) y sirven para bajar el pH. Aunque existen muchos otros compuestos presentes normalmente en el agua, no tienen un efecto apreciable en el pH de la maceración.

Los efectos de estos tres componentes fueron integrados por P. Kolbach en una ecuación para calcular la alcalinidad residual y predecir en forma aproximada el pH del macerado. La ecuación nos permitirá calcular cuánto se alejará el pH del macerado con nuestra agua de uno realizado con agua destilada, es decir, sin sales disueltas.

La ecuación requiere datos que saldrán de un análisis del agua a usar y expresados en partes por millón (ppm) o mg/l. Una vez que se calcule la alcalinidad residual, deberá ser convertida a un valor de pH relativo. Básicamente 10 grados de alcalinidad residual equivalen a 0,3 puntos de pH. Esta conversión está integrada en la ecuación completa que es la siguiente:

pH = 5,8 + {0,028 x [(CaCO3 ppm x 0,056) – (Ca ppm x 0,04) – (Mg ppm x 0,033)]}

El rango de pH óptimo de maceración está entre 5,2 y 5,5. Puede aplicar esta ecuación a su agua para saber qué tan alejado del objetivo está y cuánta atención debe prestarle al pH de la maceración.

Para corregir el pH de la maceración se pueden seguir tres caminos: agregar maltas especiales, agregar sales o seguir otros medios para tratar el agua.

Usando, incluso pequeñas cantidades, de maltas especiales (caramelos, chocolates, tostadas, etc.) se puede bajar el pH hasta en 0,5. Si se utiliza un 10 % de maltas caramelizadas, el pH baja en 0,3, usando un 20%, baja 0,5. Muchas recetas tienen tantas maltas especiales que no hace falta preocuparse en corregir el pH.

Para cervezas pálidas, se pueden usar sales de calcio o magnesio, como sulfato de calcio (yeso), cloruro de calcio, o sulfato de magnesio (sales de Epsom), para corregir el pH. Usando los cálculos que se mencionarán más adelante calcule las ppm de calcio o magnesio que se agregan y sume esta cifra a la cantidad de calcio o magnesio de su agua en la ecuación para predecir el pH de su maceración. Esto le dará una idea del impacto de las sales agregadas en el pH de su maceración.

Si usted está muy lejos del pH óptimo, entonces puede considerar cambiar el agua original de alguna forma, puede diluirla con agua destilada (libre de sales) o hervirla para remover la alcalinidad temporal. Si esto es inútil, entonces puede agregar ácido de grado alimenticio (como cítrico, fosfórico o láctico) a la maceración, pero tenga cuidado, los ácidos suelen venir muy concentrados y es muy fácil agregar demasiado.

Para ajustar las cantidades de los diferentes iones se puede agregar sulfato de calcio, cloruro de calcio, sulfato de magnesio, carbonato de calcio o cloruro de sodio. Para calcular la cantidad a agregar hay que tener en cuenta que la concentración individual de cada ion no será igual a la concentración total de la sal, es decir, si agregamos 100 mg de CaCO3 a 1 l de agua destilada no tendremos 100 mg de Ca y 100 mg de CO3. Como el carbonato de calcio está formado por dos iones cada ion representa una fracción de la sal, entonces en 100 mg de carbonato de calcio tenemos 40 mg de [Ca 2+] (ion calcio) y 60 mg de [CO3 2-] (ion carbonato). También hay que aclarar que la concentración de los iones se mide en ppm (partes por millón) que equivalen a mg/l. Es decir que en un litro de agua con 100 mg de cloruro de sodio (sal común) tendremos 100 ppm de sal.

Siguiendo ahora con el ejemplo anterior, voy a necesitar 30,8 l de agua a los que les quiero agregar 100 ppm (mg/l) de calcio. ¿Cuánto sulfato de calcio deberé agregar? Simplemente debo multiplicar este número por la cantidad de litros totales a tratar para saber la cantidad de calcio que necesitaré:

30,8 l x 100 mg/l = 3080 mg = 3,08 g de calcio

Para determinar la cantidad de sulfato de calcio requerida bastará con dividir esta cantidad por el porcentaje de calcio presente en el sulfato de calcio, que es 23%

3,08 g / 0,23 = 13,4 g de sulfato de calcio

También esto se puede calcular en la dirección opuesta. Por ejemplo, se puede preguntar cuantas ppm, de cloruro se agregarán con 10 g de cloruro de calcio en 20 l, es decir 500 ppm (10000 mg / 20 l). Como el cloruro equivale al 48 % del cloruro de calcio, agregué 240 ppm (500 ppm x 0,48).

El propósito último del agregado de sales es el de igualar su agua a la de grandes centros cerveceros mundiales, como Londres, Munich, Pilsen, etc. A pesar de que dichos cálculos pueden parecer tediosos, sólo hará falta hacerlos una vez. A menos que el agua que utilice varíe mucho, puede trazar un plan de tratamiento para cada tipo de agua que quiere lograr y simplemente repetirlo cuando lo desee.

A continuación agrego una tabla en la que figuran las sales más comúnmente usadas y el porcentaje que representan sus iones de su peso total.

Nombre

Fórmula molecular

Peso

% de peso

Cloruro de Sodio

NaCl

58

Na 40%

Cl 60%

Carbonato de Calcio

CaCO3

100

Ca 40%

CO3 60%

Cloruro de Calcio

CaCl2 + 2 H2O

146

Ca 27%

Cl 48%

Sulfato de Calcio

CaSO4 + 2 H2O

172

Ca 23%

SO4 56%

Sulfato de Magnesio

MgSO4 + 7 H2O

246

Mg 10%

SO4 39%

Existen sales que son imposibles de preparar libres de moléculas de agua, debido a que terminan formando unos enlaces bastante estables con las moléculas de sal. El peso que aporta el agua a esa molécula de sal es importante porque si está agregando una sal a agua al hacer los cálculos habrá que tener en cuenta que también se está pesando agua, y corregir el peso en forma adecuada. Tal es el caso del cloruro de calcio, el sulfato de calcio y el sulfato de magnesio. Además, en teoría, el agua esta formando parte de esa molécula. La soda cáustica (NaOH, hidróxido de sodio) es un caso especial, porque es muy higroscópica (absorbe agua), por lo tanto apenas expuesta a la atmósfera empieza a absorber el agua que está como humedad en el aire.

También hay que aclarar que el cloruro de sodio a agregar deberá ser no enriquecido con iodo.

Los principales iones aportan los siguientes perfiles:

Carbonato / Bicarbonato (CO3 o HCO3)
Los iones que determinan la dureza temporal o de "carbonatos". Expresada como “alcalinidad total" en la mayoría de las hojas de análisis, la presencia (o falta) de bicarbonato es considerado el factor más crucial del agua para cerveza. Demasiado poco y el pH del macerado será muy bajo, especialmente cuando se usan maltas oscuras (los altos niveles en el agua de Munich son los mayores responsables de la famosa suavidad de las Münchner dunkel). Demasiado contrarrestará el proceso de acidificación del ion calcio resultando en pobres rendimientos de extracción del grano malteado. Los niveles generalmente no deberían ser superiores a 25 - 50 ppm (mg/l) para cervezas claras y 100 - 300 mg/l para cervezas oscuras.

Sodio (Na)
Contribuye al cuerpo y al carácter. Utilizar demasiado  sodio en el tratamiento del agua llevará a un sabor notable a "agua de mar". Los niveles generales son 10 - 70 ppm en el agua adecuada para cerveza.

Cloruro (Cl)
Presente en la sal común de mesa, este ion resalta la dulzura de la malta y, como el sodio, contribuye a la sensación en boca y a la complejidad de la cerveza. Los niveles generales se encuentran en 1 - 100 ppm en el agua adecuada para cerveza, pero deben mantenerse siempre bajo 150 ppm para evitar sabores salados.

Sulfato (SO4)
Aunque es el segundo, después del calcio, en bajar el pH, este es el principal elemento del agua que influye sobre la cantidad de lúpulo porque resalta un amargor seco y agudo si los IBUs son muy elevados. Para Pilsners se recomiendan niveles por debajo de 10 ppm, alrrededor de 25 - 50 ppm para la mayoría de las lagers claras y 30 - 70 ppm para la mayoría de las ales. Notables excepciones incluyen las pale ales del estilo de Burton-on-Trent (500-700 ppm), las lagers de Dortmund y Vienna (100 – 130 ppm).

Calcio (Ca)
Este es el elemento más importante de la "dureza permanente" en el agua para cerveza. Ayuda a bajar el pH al rango óptimo de 5,2 - 5,5 y favorece la precipitación de proteínas (el "turbio") durante el proceso de hervor. Un buen nivel para la mayoría de las ales y lagers está generalmente considerado cerca de los 100 ppm. Demasiado crearía un sabor amargo áspero, especialmente en las lagers claras.

Magnesio (Mg)
Primariamente valuado como un nutriente para la levadura, este ion es usualmente incrementado mediante la adición de Sales de Epsom, pero la adición de magnesio es generalmente desaconsejada por muchos expertos, especialmente cuando se elaboran lagers. Niveles superiores a 30 mg/l aportarán un amargor seco y astringente a su cerveza. Los niveles de las mejores aguas del mundo rondan los 20 - 30 ppm.

La composición de aguas de famosos lugares cerveceros del mundoes la siguiente. Las composiciones están expresadas en ppm.

Lugar

CO3

Na

Cl

SO4

Ca

Mg

Burton-on-Trent

200

40

35

660

295

55

Dortmund

180

69

106

260

261

23

Dublin

319

12

19

54

117

4

London

156

99

60

77

52

16

Munich

152

10

2

8

75

18

Pilsen

14

2

5

5

7

2

Buenos Aires*

60

18 / 30

20 / 30

30 / 35

12 / 16

2 / 3

CO3: Carbonato Na: Sodio         Cl: Cloruro        SO4: Sulfato     Ca: Calcio        Mg: Magnesio.
* Según Aguas Argentinas, Diciembre de 2005. El pH no varía significativamente entre los valores superiores e inferiores de los rangos mencionados.

Bibliografía:
RAY DANIELS: Designing Great Beers – Brewers Publications, Boulder, Colorado, EE.UU. 2001
STEPHEN SNYDER: The Brewmaster’s Bible – HarperPerennial, New York, New York, EE.UU. 1997


 Arriba